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1 Introduction

   The problem of the free oscillation of water in a lake of uniform depth has been

studied in great deal by many authors when it has a circular, rectangular or elliptic

boundary. Meanwhile, Professor HIDAKA has given many not only important, but also

interesting results by means of numerical integration in case of non-uniform depth.

   When the depth is non-uniform, generally it is not so easy to find the exact solu-

tion of the fundamental equation which governs the phenomena. Thus the lake is

mostly replaced by the one with constant depth to reduce the equation to the simpler

one. This constant depth will be given as the mean value of the real depth with the

area of the free surface of that lake. As the results of this replacement the bound-

ary wall is to be vertical everywhere so in the free surface the water velocity along

the normal at any point of the boundary must be zero. This is the boundary condition

that should be imposed on the solution of the fundamental equation.

   In the present paper, the fundamental normal mode of the free oscillation of water

in a circular basin is exactly investigated when the form of the base is convexed pa-

raboloid. The resulting relationship between the frequency of the fundamental normal

mode of oscillation and the parameter which defines the shape of the base is shown

graphically when the value of this parameter is not so different from one. The well-

known value of the frequency for the circular basin with mean depth is also shown for

the comparison. An approximate fromula for this relationship is also derived by using

the same methed that Professor YAMADA has used to investigate the free oscillation

of Lake Toya in Japan. It is one of the aim of this paper to estirnate the accuracy

of such rnethod by comparing these approximate values of the frequency with those

values obtained by the exact solution.
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       2 Geometric interpretaion

   In the present case, we consider the circular basin whose base is convexed parab-

oloid so we may assume the depth h changes according to the law

                                             r2                         h==ho{(2')")+2(N-1) a2 }, (1)
where r is the distance from the cetner of the circular boundary in the free surface

when it is undisturbed. In Fig. 1 AB shows undisturbed free surface of water and

the thick line curve be the shape of the base in the eross section by the vertical

plane through the center of the lake. The rectangle APQB shows the cross section

of the circular basin with uniform depth whose volume is equal to that of the lake

which we are now concerned with. Denote the coordinate of the point E (a,-Nho)

where a and ho being respectively the radius of the circular boundary and the mean

depth, and x a certain positive number between 1 and 2.
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                                   Fig. 1

Then from the relation (1) it is easily seen that the quantity of water contained in

the surface generated by revolving the segment AC and the parabolic arc CD about z-

axis is always equal to ma2ho. Keeping both radius a and mean depth ho in constant

we may obtain the various types of the paraboloidal bottom by varying the parameter

X from 1 to 2.

       3 Fundamental equation and its solution

   Now we shall proceed to get the fund6a2rnental equation and its solution. Let the
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rectangular axes (x, y) be taken in the free surface in undisturbed level in such a

way that the origin coincides with the center of the boundary circle. Then if w be

the vertical displacement of the free surface from its equilibrium position, the dif-

ferential equation for determining the displacement of the free surface is given by

                         aa2tW, =gdiv(h grad w), ' (2)

where 9 and h being respectively the acceleration due to gravity and the depth at

any point on the bottom. Now h is supporsed to be a function of (x, y). When the

free surface oscillates in a normal mode, the displacernent w is of the form

                             w==g(x,y)cosat, (3)
where g isa function of (x, y) and a is a circular frequency. If we insert (3) into (2)

we obtain

                                       a2                         div(h grad g)+gg=O. (4)
In the present problem as h is a function of r only, the distance from the origin, in-

troducing the polar coordinates (r, e), (4) may be written

     h(.gfs-.I -z-\ +- ;, g"bg)+ g? 2i +-a,i-4-o. (s)

   Considering the normal modes of oscillation in which the motion is symmetrical

about the center of the lake we obtain from both (5) and (1) '

     ho((2-)L)+2(xm1)'rr'E -] (-dd-;IIi'+ 1, dd,g)+4ho()L-1) i2 "diJirr+mf];2:-4"::o. (6)

Putting

                         b-= l/2(2.-.",)a, (7)

that integral of the equation (6) which is finite at the origin is easily found in the

following form of ascending series

     g-A(1--t-P-,---g-2,-+P-(2tde t,8-) g,` -P(P+28,)i,P6+, 24) g6,

       +••••••••••-•+(- i)nP- (P'8)iS'i?.i. .S 2("2.-) :) (2")-] -g2,". +•••), (s)

where

                                      '                          aa                         'vgtr= V=2(x-1) V p , (g)
and A being an arbitrary constant.

   In the usual notaion of hypergeometric series the solution (8) can also be written as
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                         g-F(ap,7,- g: ), ao)
where

                         ct+I9=1, aB== :, or=1 (11)

   Since the boundary wall is vertical everywhere, as well known g must satisfy the

following boundary condition

                         (@a?) r-a :=O' (12)
Substitution of (8) into (12) immediately gives the following relation

     i- pg8 ( ,a )2+ (p+8s).(2p4+24) ( a, )`-(p+8) (,p.;4a4,)s(p+48) ( a, )6+••••••-o.a3)

   For any' circular basin whose depth varies according to the law (1),-g-is fixed

by (7) so by using the smallest positive root of the equation (13), the relation (9) will

give the frequency of the fundamental normal mode of the free oscillation of this lake.

The radius of the nodal circle is given as the smallest positive root of the equation

g=O for the values of p determined above.

       4 Numerical results

   The writer has obtained the smallest positive root of the equation (13)' in three

cases in which the value of x is equal to 1.1, 1.2 and 1.25, respectively. To this end

the values of the left hand side of the equation (13) for different values of p have been

calculated in each case and plotting these values against p the searching root has been

determined graphically. The results are shown in Table 1. The radius R of the nodal

circle in each case is given in row 4 of Table 1.

                                      aa   By using the relation (9) the curve of v-gho plotted against the parameter X is

shown by the thick line curve in Fig. 2, where is also shown the well-known value of

fgl:-io equal to 3.832 for the circular basin with constant depth h,.

                    Table 1. Values of x, p, i7i}iqtt-b and R
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                   k

                      3'8 -."7 :glF;"= 3.832{1+Kg 1'A)}

                      3.7

                                            ""                      3.6
                        LO 1.1 L2 L3 a
                                   ttg.2

                                   4a    As easily seen when X approaches 3 , b tends to 1 by (7) so the convergency of

the series in the lefthand side of (13) gets slow. Thus in these cases it seems very

laborious to find the root of the equation (13) without the aid of computer.

       5 The approximate value of the frequency

                         ,
    Now we shall proceed to explain the method to compute the approxirnate value of

the frequency when the depth is almost uniform. This method had often been used

in wave mechanics and was introduced by Dr. H. YAMADA into the study of the free

oscillation of Lake Toya.

   Denoting the mean depth of the lake ho, we may express the depth h at any point

(x, y) in the following form

                                h==ho(1+8), Q4
with

                                f,J6dxdy=o, as)
where iEl is a srnall quantity compared with unity, and s denotes the area of the free

surface of the lake. Substituting (14 into (4) we obtain

                         v2g+div(Egradg)+tLg=o, a6)
where

                                iL == c2/ghe. (IT
If the boundary wall of the lake is vertical everywhere, as well-hnown g should sat-

isfy the following boundary condition

                         (oang )on the boundary=O' (18)
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      awhere on indicates the differentiation along the normal to the boundary curve. In case

IEI is small enough we may assume g and pa are respectively expressed as

                           ;-go+gi, ag)                         (

                           pa =paO+ pab ceO)
where ge andpo being those ofgand pa when the depth is uniform (e=O). Meanwhile

gi and th may be understood as the small correction terms due to non-uniformity of

the depth, which are supposed to be in the same order as e. Inserting (19) and (20) into

(16) and equating the terms whose order are 60 and s to zero respectively, we have

                           v2go+paogo==o, 2o                         ( v2gi+paogi==-pai;o-div(6gradgo). en

The equation 20 is obviously the one in case of uniform depth. We impose the bound-

ary condition (18) to both go and g, as in the following

                           ( aagnO)on the boundaty=O, ma)

                           ( aagni ) on the beundary = O. mp

By using Green's formula in two dimensions for two functions go and gi we have

                  f,I(gov2gi - giv2go)dxdy = i, (;o aa;.' - #i aa4.0 )de, os

when e denotes the length along the boundary curve. According to the boundary con-

ditions as) and (24) the right hand side of C]ED is equal to zero. Then inserting the rela-

tion 21) into the integrand on the left hand side of en we obtain

                          S,Igo(v2gi+pa,g,)ds==o, pm

Remembering the relation ce), after a simple calculation we obtain ultirnately the fol-

lowing expression for pai

                       f,f godiv (egradgo) ds                                          JfE(grad4o)2ds                                                      -- (2n                  pai=- f,iggds = ffggds

   Now we shall apply this method to the present problem. From the relation (1) we

have

                         h=ho(1+(1-x) (1- 2i,2)]. os)

In case when the base is slightly different from flat plane the parameter X is nearly

equal to 1 so we may put

                         6= (1-N) (1- 2i,2), mo)
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For the case which we are now concerned with, it is well known that go and pao will be

given by the following formulae (30) and (31), respectively,

                         go =- Jo( V7iTo r) =Jo( a.' r), (3o)

                             al                                ' (31)                         Po = a2

where ai==3.832 is the smallest positive root of the equation

                         Ji(g)=O. (32)
Jo(g) and Ji(g) are Bessel functions of the zeroth and the first order, respectively.

Substituting as) and (so) into (27), and putting

                                      r                                  P= a'

we get

                    pi-(i-N) ('5(7i,eS,31E}g",sg}]2dp a.2i }.

   Meanwhile following results can easily be found,

     Jg[Jo(g)]2dg=-S-g2{[J,(g)]2+[J,(g)]2},

     Jg[J,(g)]2dg--S-g2{[J,(g)]2+[J,(g)]2}-gJ,(g)J,(g),

     Jg3[J,(g)]2dg- g g4{[J,(g)]2+[J,(g)]2}- 23 g3J,(g)J,(g)+ 23 g2[Ji(g)]2

Thus using these relations and considering that ai is the root of the equation

                         J:(g) =- o,

we have the following expressiin for pai

     pai=(i-x) S [JO(iti)[]J2,7.,i],[JO(a')]2 aii, -- g a-x) z,2'

Inserting (31) and (37) into mo) and considering the relation aT we have finally

     -v!gafi,=ai(1+--g•-(1-X))'e't=ia,(1+-tL-(1-x)]=3.s32(1+ g (1-x)).

   The values of t•-a•=g=a--E=o• calculated by this approximate forrnula are shown by

thin line in Fig. 2. It will be seen that in our case, this approximate formula (38)

particularly useful for calculating the numerical value of t'a"ga-h-no when x does not

differ from. 1.
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       6 Summary

   The fundamental normal mode of the free oscillation of water in a circular lake

with convexed paraboloidal base is exactly investigated in case when the vertical dis-

placement of the water surface from the equilibrium position is to be symmetrical

about the center of the free surface.

                           aa   The relationship between ,/gho and X is shown graphically for the values of x

which are not so different from 1, when a is a circular frequency, aa radius of the

circular boundary, X a parameter that determines the shape of the base and Y and ho

being the acceleration due to gravity and the mean depth of the lake respgctively,
When xtakes avalue between 4/3 and 2, it is unable to find the value of luaE-pa'mh-'

i

because the series in (13) does not converge. In such a case some other methods of

analysis should be searched for.

   An approximate formula between t-9tt-i-6 and x is also derived, and besides, the

radii of the nodal circles for three cases have been determined.

   It has been well illustrated that the parameter X has little influence not only on

the frequency but also on the radius of the nodal circle when its value does not so

differ from 1. It is also shown that YAMADA's method to find the approximate value

of the frequency of the free oscillation of the lake with nearly uniform depth is par-

ticularly useful in case when the shape of the base is convexed paraboloid.
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